Extensions 1→N→G→Q→1 with N=S32×C6 and Q=C2

Direct product G=N×Q with N=S32×C6 and Q=C2
dρLabelID
S32×C2×C648S3^2xC2xC6432,767

Semidirect products G=N:Q with N=S32×C6 and Q=C2
extensionφ:Q→Out NdρLabelID
(S32×C6)⋊1C2 = S3×D6⋊S3φ: C2/C1C2 ⊆ Out S32×C6488-(S3^2xC6):1C2432,597
(S32×C6)⋊2C2 = S3×C3⋊D12φ: C2/C1C2 ⊆ Out S32×C6248+(S3^2xC6):2C2432,598
(S32×C6)⋊3C2 = D64S32φ: C2/C1C2 ⊆ Out S32×C6248+(S3^2xC6):3C2432,599
(S32×C6)⋊4C2 = D6⋊S32φ: C2/C1C2 ⊆ Out S32×C6488-(S3^2xC6):4C2432,600
(S32×C6)⋊5C2 = C3×S3×D12φ: C2/C1C2 ⊆ Out S32×C6484(S3^2xC6):5C2432,649
(S32×C6)⋊6C2 = C3×D6⋊D6φ: C2/C1C2 ⊆ Out S32×C6484(S3^2xC6):6C2432,650
(S32×C6)⋊7C2 = C3×S3×C3⋊D4φ: C2/C1C2 ⊆ Out S32×C6244(S3^2xC6):7C2432,658
(S32×C6)⋊8C2 = C3×Dic3⋊D6φ: C2/C1C2 ⊆ Out S32×C6244(S3^2xC6):8C2432,659
(S32×C6)⋊9C2 = C6×S3≀C2φ: C2/C1C2 ⊆ Out S32×C6244(S3^2xC6):9C2432,754
(S32×C6)⋊10C2 = C2×C33⋊D4φ: C2/C1C2 ⊆ Out S32×C6244(S3^2xC6):10C2432,755
(S32×C6)⋊11C2 = C2×S33φ: C2/C1C2 ⊆ Out S32×C6248+(S3^2xC6):11C2432,759

Non-split extensions G=N.Q with N=S32×C6 and Q=C2
extensionφ:Q→Out NdρLabelID
(S32×C6).1C2 = C3×S32⋊C4φ: C2/C1C2 ⊆ Out S32×C6244(S3^2xC6).1C2432,574
(S32×C6).2C2 = S32⋊Dic3φ: C2/C1C2 ⊆ Out S32×C6244(S3^2xC6).2C2432,580
(S32×C6).3C2 = S32×Dic3φ: C2/C1C2 ⊆ Out S32×C6488-(S3^2xC6).3C2432,594
(S32×C6).4C2 = S32×C12φ: trivial image484(S3^2xC6).4C2432,648

׿
×
𝔽